TECHNOLOGY

Starship, Raptor engines, habitat modules, ISRU, life support, and power systems

════════════════════════════════════════════════════════════════════════

C:\MOON\TECH> inventory --all

LAUNCH SYSTEMS: Starship + Falcon 9

HABITAT SYSTEMS: 5 major components

ISRU SYSTEMS: 4 subsystems

LIFE SUPPORT: 5 critical systems

────────────────────────────────────────────────────────────────────────

"The best part is no part. The best process is no process."

— Elon Musk, on Starship engineering philosophy

────────────────────────────────────────────────────────────────────────

// STARSHIP_SYSTEM.TXT

STARSHIP — 120m tallFirst orbital flight: 2025

Fully reusable two-stage super heavy-lift launch system. The backbone of the entire lunar settlement program.

Super Heavy booster: 33 Raptor engines, 7,590 tf thrust. Starship upper stage: 6 Raptor engines, 100+ tonne payload to LEO. Lunar variant (HLS): extended cargo bay, solar arrays, lunar landing legs.

────────────────────────────────────────────────────────────────────────

// RAPTOR_ENGINE.TXT

RAPTOR — 230 tf thrust3rd generation in production

Full-flow staged combustion methalox engine. Most advanced rocket engine ever built. Powers both Super Heavy booster and Starship upper stage.

Raptor 2 (production)Raptor 3 (optimized)Raptor Vacuum (upper stage)Sea-level variant
────────────────────────────────────────────────────────────────────────

// HABITAT_SYSTEMS.DAT

[INFLATABLE HABITAT MODULE]Deployment: 2027

Sierra Space / SpaceX

Bigelow-derived expandable module, 300 m³ pressurized volume per unit

Spec: Mass: 8 tonnes | Status: 4 units planned for Phase 1

[SUITPORT AIRLOCK]Testing: 2025-2026

NASA JSC Design

Rear-entry EVA access without bringing lunar dust into habitat. Suit remains outside.

Spec: Cycle time: 10 min | Status: 4 ports per habitat module

[REGOLITH 3D PRINTER]Lunar demo: 2027

ICON / NASA

Microwave sintering of lunar soil into structural shells. Prints walls, floors, radiation barriers.

Spec: Rate: 1.5 bricks/hr | Status: Autonomous operation

[RADIATION STORM SHELTER]Integrated: Phase 1

SpaceX Lunar Division

Central water-wall shelter in each habitat. Water tanks double as radiation shielding.

Spec: Capacity: 12 crew | Status: 72-hour SPE protection

[PRESSURIZED ROVER]Delivery: 2028

JAXA / Toyota Lunar Cruiser

Shirt-sleeve environment rover for long-range EVA. 10,000 km range on fuel cells.

Spec: Crew: 2 (4 emergency) | Status: Range: 10,000 km

────────────────────────────────────────────────────────────────────────

// ISRU_SYSTEMS.DAT

In-Situ Resource Utilization — turning lunar materials into breathable air, drinking water, and rocket fuel.

[THERMAL WATER EXTRACTOR]Pilot: 2027

Heats icy regolith to 150°C, captures sublimated water vapor, condenses to liquid

Performance: Output: 500 kg/month

[SOLID OXIDE ELECTROLYZER]Full scale: 2028

Splits water into oxygen and hydrogen at 800°C using ceramic membranes

Performance: Efficiency: 85%

[CRYOGENIC PROPELLANT STORAGE]Construction: 2028

Zero-boiloff LOX/LH2 tanks in permanently shadowed crater alcove

Performance: Capacity: 100 tonnes

[REGOLITH EXCAVATOR ROBOT]Deployment: 2027

Autonomous mining robot operates in PSR darkness, delivers feedstock to extractor

Performance: Throughput: 2 tonnes/day

────────────────────────────────────────────────────────────────────────

// LIFE_SUPPORT_SYSTEMS.TXT

Life support is the most critical technology for permanent settlement. Every molecule of air and drop of water must be recycled with near-perfect efficiency.

ECLSS (Environmental Control & Life Support)Closed-loop air revitalization, CO2 scrubbing, O2 generation, trace contaminant removal

94% water recovery, 78% oxygen regeneration

WATER RECOVERY SYSTEMMulti-stage filtration and distillation of waste water, humidity condensate, and urine

Target: 98% recovery rate for settlement

THERMAL CONTROL SYSTEMRadiator panels, heat pipes, and fluid loops managing 300°C temperature differential

Must handle both sunlight (+127°C) and shadow (-173°C)

FOOD PRODUCTION GREENHOUSELED-lit hydroponic growing chambers for fresh vegetables and supplemental calories

Phase 2: 20% caloric self-sufficiency target

NUCLEAR KILOPOWER REACTOR10 kW fission reactor for emergency backup power during extended darkness periods

Stirling engine conversion, 15-year fuel life

────────────────────────────────────────────────────────────────────────

// POWER_ARCHITECTURE.TXT

The lunar base power architecture uses a layered approach:

  • • Primary: 500 kW solar array field on Malapert Peak ridge
  • • Storage: Lithium-ion battery banks for 72-hour backup
  • • Emergency: 10 kW Kilopower fission reactor (15-year fuel life)
  • • Distribution: Microwave beaming to crater floor ISRU operations
  • • Future: 40 kW fission surface power system (NASA/DOE development)
  • • Expansion: Additional solar farms as settlement grows
════════════════════════════════════════════════════════════════════════

// REFERENCES.TXT

• SpaceX Starship User's Guide, Rev 1.0

• NASA Artemis Plan: Going Forward to the Moon (2020)

• NASA ISRU Technology Development Roadmap

• ICON Project Olympus Technical Summary

• JAXA Lunar Cruiser System Requirements Document

C:\MOON\TECH>